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angles, circles, and other geometrical figures, without which it is humanly impossible

to understand a single word of it; without these, one is wandering around in a dark

labyrinth.”

Galileo Galilei, The Assayer
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Problems combining facility location with connectivity requirements are fundamental in

network design. In this thesis, we investigate the Connected Facility Location (CFL)

problem through the non-trivial special case of Single-Sink Rent-or Buy (SRoB) prob-

lem. We develop two approaches for this problem, and illustrate the limitations and

promises of both. Our first approach is based on a natural linear program for SRoB.

Till date, no algorithm based on this linear program is known. We sketch an algorithm

which performs well in many instances of the problem, but runs into trouble for certain

pathological cases, which we illustrate. Our second approach borrows ideas from the dual

fitting algorithm for metric uncapacitated facility location by Jain et al. (called JMS al-

gorithm), and combines it with the Goemans-Williamson moat growing procedure. This

approach aims to neutralize the slack in the Goemans-Williamson argument with the

one associated with the JMS procedure, and thus holds a lot of promise for achieving an

overall 2-approximation for CFL. Apart from these two approaches, we investigate the

scope for improvement in the 4.55- approximation algorithm due to Swamy and Kumar,

which gives the current best primal-dual based performance guarantee for SRoB. We

illustrate a very simple instance where the algorithm produces a 3-approximation, thus

giving a lower bound on the performance guarantee for that algorithm.
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Algorithms, and The Magic of Mathematics

In his 1960 article The Unreasonable Effectiveness on Mathematics in the Natural Sci-

ences, Eugene Wigner expresses wonder at the powerful applicability of mathematical

concepts, especially in contexts far beyond those that had initially motivated their de-

velopment. He says,

“It is difficult to avoid the impression that a miracle confronts us here, quite

comparable in its striking nature to the miracle that the human mind can

string a thousand arguments together without getting itself into contradic-

tions, or to the two miracles of laws of nature and of the human mind’s

capacity to divine them.”

It indeed is a marvel that the same relationship between variables (mathematical labels)

which describes the fall of a stone also predicts the motions of stars and planets.1 That

the constant which describes the ratio of a circle’s circumference to its diameter also

appears in cosmology, statistics, fractals, thermodynamics, mechanics, and electromag-

netism and concepts which have nothing to do with a circle.2 That abstract structures

motivated by the problem of traversing a city through bridges find powerful application

in telecommunication, linguistics, sociology, chemistry and biology.3 That a neat, finite,

mathematically grounded sequence of operations can dissect the workings of the real

world, and solve problems of seemingly colossal complexity.

This miraculous two-way conversation between mathematics and the real world has in-

tensified in our increasingly complex and intricate society. Today, the world is more

1Newton’s law was not only based on scanty observations, but also contained the physically non-
intuitive idea of the second derivative.

2Wigner gives an anecdote of two friends, one of whom, a statistician, was working on population
distribution. When the statistician explained the symbol π occurring in a particular distribution, the
friend, who presumably was not a mathematician, thought it was a joke and said, “surely the population
has nothing to do with the circumference of a circle”.

3Graph theory has been used to form semantic networks of word meanings, in measuring actors’
prestige, in exploring social diffusion mechanisms and breeding patterns, in tracking the spread of diseases
and parasites, in forming natural models for molecules (representing atoms as nodes and bonds as edges),
and in network flows, among many other things.

i



connected than ever, data and information is exploding, while the natural and techno-

logical resources we have at our disposal stay limited. Algorithmic and computational

techniques are now central to decision-making, in planning, scheduling, allocation of

resources, traffic routing, data organisation4 and in fields as diverse as Healthcare, Man-

ufacturing, IT, Telecommunications, Agriculture, Finance, Service and Retail, Military,

Mining, Shipping and Transportation, and Waste Management. In the other direction,

the study of these problems, and the associated complexity and heuristics, has inspired

some very deep and beautiful mathematical results over the years, which are, in turn,

applicable to a much larger class of problems.

Exposing the underlying mathematical structures of real world problems brings us closer

to the very ‘language of the universe’. There is something aesthetically pleasing in using

‘the language of the universe’ to solve real world problems, and in using real world prob-

lems to further our understanding of this language. Paul Lockhart, in A Mathematician’s

Lament, refers to a certain mystical feeling, associated with such pursuits:

“The thing I want you especially to understand is this feeling of divine rev-

elation. I feel that this structure was “out there” all along I just couldn’t

see it. And now I can! This is really what keeps me in the math game– the

chance that I might glimpse some kind of secret underlying truth, some sort

of message from the gods.”

At its very core, this thesis is motivated by this feeling of divine revelation.

4Personnel scheduling, facility planning, resource management, process design, forecasting, portfo-
lio management, personal consumption management, pricing, and inventory management....The list is
endless.



CHAPTER 1

Introduction

1.1 Network Design and Approximation Algorithms

Many interesting real world scenarios can be modelled through weighted graphs called

networks. For example, networks are used to represent transport system (such as high-

ways and mass-transit systems), telecommunication, electrical distribution, fluid flow in

pipes, flow of nutrients and energy between different organizations in a food web, among

many other processes. Different applications judge the merit of a network in different

ways and differing cost criteria. For instance, consider the problem of finding the short-

est route from a City A to City B. The scenario can be modelled as a graph with cities

as nodes, the connections between cities as edges, and the length of the connections as

the weights. Given City A (node s) and City B (node t), this turns into the problem

of finding the shortest path between these nodes. The shortest path corresponds to the

optimal network in this case.

Unfortunately, most problems in the optimal design of networks are challenging from

a computational point of view, which is to say that no polynomial time algorithm for

them is known.1 In the above example, if instead of asking for the shortest path, we

wanted to find the longest path between s and t which repeats no vertices, the problem

becomes computationally hard. What should be done in such a case?

One way out is to relax the optimality criterion, and design algorithms which are efficient

and produce solutions which are near-optimal, over all problem instances.2 This trade-off

1Or even exists, if one is to believe P 6= NP. For a better understanding of this notion, see Appendix
A.

2It should be noted that some problems don’t even have approximation algorithms. There’s a whole
class of problems for which designing a good approximation algorithm would imply P = NP

1



Chapter 1. Introduction 2

between optimality and computational tractability is the principle behind approximation

algorithms.

The study of these computationally hard problems through approximation algorithms

has been very valuable. The push to develop good heuristics often results in a deeper

mathematical understanding of the problem’s structure, computational properties and

new approaches (sometimes for subcases), which leads to better algorithms for solving

hundreds of other different but related hard problems.

The problems studied in this thesis falls in the ambit of Connected Facility Location,

which combines problems of facility location with problems of connection. The problem

arises frequently in telecommunication network infrastructure. It combines two classical

problems in combinatorial optimization, and contains an important special case:

• The Steiner tree problem, in which we look for the shortest interconnect for a given

set of objects

• Facility Location, in which we look for the optimal placement of facilities

• Single Sink Rent-or Buy, in which we design a network under economies of scale

1.2 Literature Review

The design and analysis of algorithms in combinatorial optimisation has been heavily

influenced by Linear programming, particularly for problems which can be naturally

formulated as integer programs. Most of the fundamental algorithms in combinatorial

optimisation either use this method or can be understood in terms of it, including Dijk-

stra’s shortest path algorithm[3, chap. 7], Ford and Fulkerson’s network flow algorithm,

Edmonds’ non-bipartite matching algorithm and Kuhn’s assignment algorithm[4, pg.

145].

The primal dual method has especially flourished in the area of network design. One of

the first such algorithms was a moat growing procedure by Agarwal, Klein and Ravi[5] for

the generalised Steiner problem on networks, which achieves an approximation factor

of 2. Goemans and Williamson generalise the method and apply it to a large class

of problems (see [4, 6] for a survey of this). Notably, they develop a 2-approximation

algorithm for the Prize Collecting Steiner tree(PCST) problem on the same lines[3, chap.

14]. There is a slack in the Goemans-Williamson argument arising from the observation

that we do not need the contribution from one of the active leaf components to get a

bound of two. This slack is exploited by Naveen Garg[7] to obtain a 2-approximation
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for the k-MST problem. We note that this slack might be useful in improving the ratio

of many network design problems that contain elements of PCST.

The primal dual based methods have also been used to obtain good approximation al-

gorithms for metric uncapacitated facility location (UFL). Jain and Vazirani[8] use the

technique to achieve an approximation factor of 3. Their algorithm uses the observation

that a maximal dual solution corresponds to a feasible set of facilities, and an economi-

cally suitable subset of facilities can be chosen from that by forming clusters of demands

and facilities. Jain et al.[9] later give two greedy algorithms for UFL, with approxima-

tion ratios of 1.861 and 1.61 respectively. Both these algorithms are inspired by the

primal dual type algorithm traditionally used for set cover (called dual fitting), and are

analyzed using the star formulation for UFL given by Balinsky[10]. In the first of these

algorithms, when a client gets connected to an open facility, it withdraws whatever it

has contributed towards the opening cost of other facilities. This step of withdrawing

contribution ensures that the primal solution is fully paid for by the dual. The second

algorithm has a minor difference with the first one: A client might change the facility

to which it is connected and connect to a closer facility. If so, it offers this difference

toward opening the latter facility. We briefly review these algorithms in Chapter 4.

The problems considered in this thesis, CFL and SROB, have also recently received

considerable attention, both in theoretical computer science literature and operations

research literature. The current best known results for them are due to Eisenbrand

et al.[11], who give a 4-approximation for CFL and a 2.92 approximation for SRoB.

They improve the analyses of the Sample-Augment-like algorithm initially given in [12]

through a novel method called core-detouring. If we consider primal–dual approaches to

CFL, the most significant result is by Swamy and Kumar[13]. Their algorithm combines

a modification of the JV algorithm[8] for UFL with the moat growing procedure of [5],

achieving an 8.55-approximation ratio for CFL and 4.55 for SRoB (the current best).

Their algorithm achieves partial economic viability by opening those facilities where

enough local demand can be gathered at a minimum cost . In making this approximation,

their algorithm doesn’t fully incorporate the overall connectivity requirements in their

decision as to which facilities to open. We examine this algorithm in Chapter 5.

1.3 Our Contributions

In this thesis, we investigate the Connected Facility Location problem through the non-

trivial special case of Single-Sink Rent-or Buy (SRoB) problem. We develop two ap-

proaches for this problem, and illustrate the limitations and promises of both. Apart
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from that, we construct an instance of SRoB where the Swamy-Kumar primal dual algo-

rithm gives a 3-approximation, thus giving a lower bound on the performance guarantee

of that algorithm.

1. Our first approach (Chapter 3) is based on a natural Linear Program for SRoB.

Till date, no algorithm based on this linear program is known. We sketch an

algorithm which performs well in many instances of the problem, but runs into

trouble for certain pathological cases. A class of these instances can be fixed by

replacing edges with bidirectional arcs. The integrality gap for the linear program,

and possible modifications to the algorithm which take care of all the pathological

cases, present interesting open problems for future work.

2. Our second approach(Chapter 6) borrows ideas from the second dual fitting algo-

rithm for UFL (called JMS algorithm)[9] and combines it with the moat growing

procedure for PCST[3, chap. 14][6]. This approach aims to neutralize the slack

in the Goemans-Williamson PCST argument with the one associated with that

associated with the JMS procedure, and thus holds a lot of promise for obtaining

an overall 2-approximation for CFL.

3. We investigate (Chapter 5) the scope for improvement in the 4.55- approximation

algorithm due to Swamy and Kumar[13], which gives the current best performance

guarantee for SRoB through a primal dual method. The algorithm combines the

JV Algorithm for UFL[3, 8] with the moat growing procedure for the Steiner

tree[3–5]. We illustrate a very simple instance where the algorithm produces a 3-

approximation, thus giving a lower bound on the performance guarantee for that

algorithm.

1.4 A Roadmap for the Thesis

Chapter 2 gives an overview of a few preliminary concepts which will make it easier to

navigate through the thesis. Chapter 3 introduces the Single Sink Rent-or Buy (SRoB)

problem and develops a fresh new approach to solving it, based on a natural linear

program. Chapter 4 introduces the more general Connected Facility location problem

(CFL). The primal dual approaches to the classical problems of Steiner tree and Facility

location which CFL combines are also sketched in this chapter. Chapter 5 examines

the Swamy Kumar 4.55-approximation for SRoB. Chapter 6 describes a possible new

primal dual approach for solving CFL, which combines the dual fitting Facility location

algorithm[9] with the moat growing procedure for Prize Collecting Steiner Tree[3–6].



CHAPTER 2

Preliminaries

2.1 NP Completeness

There are problems in the class NP that are representative of the entire class, in the

sense that if they have polynomial-time algorithms, then P = NP, and if they do not,

then P 6= NP. These are the NP − complete problems.

Definition 2.1. (NP-completeness) A problem B is NP − complete if B is in NP,

and for every problem A in NP, there is a polynomial-time reduction from A to B.

A polynomial-time solution for any NP − complete problem would imply one for every

problem in NP. The term NP − hard is usually applied to optimization problems

whose corresponding decision problems are NP − complete. For a better understanding

of these notions, see Appenfix A, or refer [3, Appendix A].

2.2 Approximation Ratio

A ρ− approximation algorithm for an optimization problem is a polynomial time algo-

rithm that for all instances of the problem produces a solution whose value is within a

factor of ρ of the value of an optimal solution.

Definition 2.2. (ρ-approximation algorithm) Given an optimization problem
∏

,

an algorithm A a polynomial time approximation algorithm if it runs in polynomial time

(see Appendix A) and returns a solution to the problem “close” to the optimal. If the

problem is a minimization problem, then the algorithm A is called the a ρ() − factor
approximation algorithm, where ρ : R→ R is a function taking reals to reals, if for any

5
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instance I of the optimization problem
∏

, the solution returned by the algorithm A is

guaranteed to have cost

A(I) ≤ ρ(|I|).OPT (I)

where OPT (I) is the value of the optimum solution to I and |I| is the size of the repre-

sentation of the instance I. Note that ρ(|I|) ≥ 1 as one cannot possibly do better than

the optimum. Furthermore A runs in time bounded by a polynomial in |I|. Similarly, if∏
were a maximization problem, the definition would be the same with the inequality

reversed, and ρ() would be less than 1.

For a ρ − approximation algorithm, we will call ρ the approximation factor or perfor-

mance guarantee of the algorithm.

2.3 Linear Programming

One way in which to find an algorithm A which is a ρ− approximation algorithm is to

find a bound on OPT (I) (a lower bound if
∏

is a minimization problem) in polynomial

time. An extremely elegant method of obtaining better (efficiently computable) bounds

is to model the combinatorial optimization problem as an integer program and then use

the solution of its linear programming relaxation as the bound. This procedure will

become clearer when we apply it to SRoB in Chapter 3.

2.3.1 Approximation via Primal Dual Method

In the Primal Dual method, we use both the LP relaxation of an integer program and its

dual formulation to construct a good solution. The algorithm starts off with a feasible

dual solution and a corresponding infeasible primal solution. We then use the feedback

from the primal solution to increase our dual solution in such a way that the primal

complementary slackness conditions are satisfied. We continue this procedure till we

construct a feasible primal solution whose total cost is within a factor ρ of the cost of

the feasible dual solution. Since the dual solution provides a lower bound to the optimal

cost, the cost of the constructed solution is within ρ times the optimal value.

2.3.2 Approximation via Dual Fitting

The method of dual fitting can be described as follows, assuming a minimization problem:

The basic algorithm is combinatorial. Using the LP relaxation of the problem and its

dual, we first come up with an algorithm that iteratively makes primal and dual updates.
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These updates are made in such a way that the primal integral solution found by the

algorithm is fully paid for by the dual computed, i.e., the objective function value of

the primal solution is bounded by that of the dual. In this process, the dual solution

computed is, in general, infeasible.1 The main step in the analysis consists of dividing

the dual by a suitable factor, say ρ, and showing that the shrunk dual is feasible, that

is, it fits into the given instance. The shrunk dual is then a lower bound on OPT, and

ρ is the approximation guarantee of the algorithm.

One of the advantages of primal-dual type algorithms is that one does not need to solve

any LP . By considering the dual, we reduce a weighted optimization problem to to a

purely combinatorial, unweighted problem. However on the flip-side, these algorithms

are hard to develop since they typically use only “local information” and designing such

algorithms require considerable amount of finesse. Also, these methods provide deep

insights we have into the structure of numerous fundamental combinatorial problems.2

2.4 Limitations of Linear Programming

The limitations on obtaining good bounds on the optimal value for an optimization prob-

lem
∏

through LP relaxation of an integer programs is captured by following definition

of the integrality gap:

Definition 2.3. (Integrality Gap) Given a minimization problem
∏

and given an

LP-relaxation LP∏ for the problem, the Integrality Gap I.G, of the LP-relaxation is

defined as

I.G.(LP∏) = sup
I

OPT∏(I)

LP∏(I)

where the supremum is taken over all instances I of the minimization problem. For max-

imization problems, the integrality gap is defined similarly with the supremum replaced

by an infimum.

Given any minimization problem
∏

and an LP-relaxation LP∏ for it, the best approx-

imation one can prove using the LP-optimum as a lower bound is at least I.G.(LP∏).

1It is here that the algorithm departs from the primal-dual method in the strictest sense
2We refer the reader to a guest post by Vijay Vazirani, titled “Seeking Combinatorial Algorithms for

Convex Programs” on the blog Turing’s Invisible Hand. 12 January 2010



CHAPTER 3

A Primal Dual Algorithm for the Single Sink Rent-or Buy problem

3.1 Problem Description

In the single-sink rent-or-buy problem, we are given an undirected graph G = (V,E),

non-negative costs (also called lengths) ce defined on every edge e ∈ E (c : E → R+), a

root vertex r ∈ V , a set of clients X ⊆ V , and a parameter M > 1.1 In this scenario, we

need to design a network connecting all clients to the root; one in which for each client

we can specify a path of edges from the client to the root. We say that a client uses

an edge if the edge is on the client’s path to the root. To build the paths, we can both

buy and rent edges. We can buy edges at cost Mce, and once bought, any client can

use the edge. We can also rent edges at cost ce, but then we need to pay the rental cost

for each client using the edge. The goal is to find a feasible network that minimizes the

total cost (of buying and renting edges.) We can formalize the setting by letting B ⊆ E
be the set of edges that are bought, and letting Rj be the set of edges that are rented

by client j ∈ X. Then for each j ∈ X, the set of edges B ∪Rj must contain a path from

j to the root r. Let c(F ) =
∑

e∈F ce for any F ⊆ E. Then the total cost of the solution

is Mc(B) +
∑

j∈X c(Rj). We must find edges B to buy and Rj to rent (for each j) that

minimizes this overall cost.

1In some formulations, we have demands dj associated with each client j ∈ X (d : X → Q+). Here
we assume that every client j ∈ X has a unit demand, dj = 1,∀j ∈ X. This assumption is without loss
of generality, as we may replace j by several copies of co-located unit-demand clients.

8
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3.2 Applications

The Rent-or-Buy Network Design problem captures the“economies of scale” property,

which says that the per unit cost of installing capacity on edges of the network decreases

as more capacity is installed.

Consider an oil company that wishes to connect a network of pipelines to carry oil

from several remote wells (clients) to a major refinery (sink). The company can install

capacities on the pipelines in two ways: Capacity can be rented, with cost incurred on

a per unit of capacity basis, or bought, which allows unlimited use after payment of a

large fixed cost. The goal is to design a minimum cost network that would be sufficient

to transport the oil to the refinery, assuming fixed oil supply at each well. This is exactly

the SRoB problem. It is not difficult to see that SRoB manifests in a number of different

situations - in online settings (network leasing), in telecommunication infrastructure, in

VLSI design, and so on.

3.3 Previous Literature

SRoB frequently arises in literature as a special case of the Buy-at-bulk network design,

as well as Connected Facility Location, which we’ll trace in Chapter 4.

The Buy-at-bulk network design is defined in terms of installing cables on edges, with

different cable types offering different amounts of capacity and carrying different costs.

Andrews and Zhang[15] show that this problem can be rephrased (with a loss of a small

constant factor in the approximation ratio) with each cable type carrying a fixed cost

(which must be paid irrespective of the capacity needed) and an incremental cost (which

is paid for each unit of capacity required). SRoB therefore corresponds to the special

case of one cable type with an incremental cost but no fixed cost, one cable type with a

fixed cost but no incremental cost, and where all source-sink pairs share a common sink.

Karger and Minkoff[16] gave the first constant approximation algorithm for SRoB in

their study of the so-called Maybecast problem, which is the probabilistic version of

the Steiner Tree problem. Although the SRoB problem is not explicitly mentioned in

[16], the Maybecast problem they studied is actually a variant of the SRoB problem.

The approximation ratio is improved to 9 by LP-rounding[17], to 4.55 by primal-dual

schema[13], to 3.55 by Sample-Augment with analysis via cost-sharing[12], and finally

to 2.92 by Sample-Augment with analysis via core-detouring[11]. The last two are

approximation ratios in expectation. For an overview of these, see survey by Zhang[14].
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The best primal dual based algorithm is 4.55-approximation is given by Swamy and

Kumar[13], which we examine in Chapter 5.

3.4 Integer Programming Formulation

SRoB can be formulated naturally as an Integer Program.

We need to decide which edges to buy (for all), and we need to decide which edges to

rent for each client. We create decision variables tp represent this choice: let integer

variable be represent the ‘bought’ status for edge e (whether edge e has been bought or

not), and let integer variable re,j represent the ‘rented’ status with respect to edge e and

client j (whether edge e has been rented for client j i.e. client j it uses the edge on its

path as a rented edge).

be =

1 if be ∈ B

0 if be /∈ B
re,j =

1 if re,j ∈ Rj

0 if re,j /∈ Rj

To reflect the above nature of the decision variables, we constrain the decision variables

to non-negative integers : be, re,j ∈ {0, 1}. We need to enforce that the decision variables

represent a feasible solution. i.e. a network in which all the clients are connected to the

root. From every cut that separates a client j from the root, the client must use atleast

one edge. We formalize this notion. Given a non-empty set of vertices S ⊂ V , let δ(S)

denote the set of edges in the cut defined by S; that is, δ(S) is the set of all edges with

exactly one endpoint in S. Let Sj be the subsets of vertices which contain j but not r;

that is, Sj = S ⊆ V : j ∈ S, r /∈ S. We introduce the following constraint:

∑
e∈δ(S)

(be + re,j) ≥ 1

for each j and each S ∈ Sj . We want to find a feasible network of minimum cost. Given

the decision variables, and the constraints described above, the cost of the network

is M(
∑

e∈E cebe) +
∑

j∈X
∑

e∈E cere,j . Thus, we model the Single-Sink Rent-or-Buy

problem with the following integer program:

minimize M
∑
e∈E

cebe +
∑
j∈X

∑
e∈E

cere,j

subject to
∑
e∈δ(S)

(be + re,j) ≥ 1 , ∀j and ∀S ∈ Sj

be, re,j ∈ {0, 1} , ∀e ∈ E and ∀j ∈ X
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Claim. The above integer program models the single-sink rent-or-buy problem.

Proof. Take any feasible solution and pick any client j. Let Pj = {e ∈ E : be =

1 or re,j = 1}. The constraints ensure that for any j − r cut S, there must be at least

one edge of Pj in δ(S): that is, the size of the minimum j − r cut in Gj = (V, Pj) must

be at least one. Thus, by the max-flow/min-cut theorem the maximum j − r flow in Gj

is at least one, which implies that there is a path from j to r in the graph. Similarly,

if a solution is not feasible, then there is some j for which there exists a j − r cut S

such that there are no edges of Pj in δ(S), which implies that the size of minimum j− r
cut is zero, and thus the maximum j − r flow is zero. Hence, there is a path from each

j ∈ X to r if and only if these constraints are satisfied, and if they are all satisfied,

there will be a graph connecting all the clients to the root corresponding to the decision

variables which have value one. Thus, the solution space of the integer program and of

the single-sink rent or buy problem are the same (upto an isomorphism), and so is their

cost function.

3.5 Linear Programming Relaxation

Unless P = NP the above integer program can’t be solved in polynomial time. SRoB

is NP − hard, and solving the integer program for any SRoB input would amount to

P = NP. However, if we change the integer program to a linear program by relaxing

the integer conditions, we will be able to derive useful information, since linear programs

can be solved in polynomial time.

We replace the constraints be, re,j ∈ {0, 1} with the constraints be, re,j ≥ 0.2

Claim. The linear program thus obtained (given in Section 3.5.1 below) is a relaxation

of the original integer program.

Proof. To prove that its a relaxation, two things need to be shown: every feasible

solution for the original integer program (Section 3.4) is feasible for this linear program;

and second, the value of any feasible solution for the integer program has the same value

in the linear program.

Any solution for the integer program will certainly satisfy all the constraints of the linear

program.

be, re,j ∈ {0, 1} ⇒ be, re,j ≥ 0, ∀e ∈ E and ∀j ∈ X
2We could also add the constraints be, re,j ≤ 1, but they would be redundant: in any optimal solution

to the problem, we can reduce be, re,j > 1 to be, re,j = 1 without affecting the feasibility and without
increasing the cost.
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Furthermore, the objective functions of both the integer and linear programs are the

same, so that any feasible solution for the integer program has the same value for the

linear program.

Let ZLP denote the optimum value of this linear program, and ZIP denote the optimal

value of the integer program. Since optimal solution to the integer program is feasible

for the linear program, ZLP ≤ ZIP = OPT (since this minimization linear program finds

a feasible solution of lowest possible value). We’d try to construct a feasible solution to

the integer program in polynomial time, and use the above fact to obtain good bounds

on its value.

3.5.1 Primal Problem

minimize M
∑
e∈E

cebe +
∑
j∈X

∑
e∈E

cere,j

subject to
∑
e∈δ(S)

(be + re,j) ≥ 1 ∀j and ∀S ∈ Sj

be, re,j ≥ 0 ∀e ∈ E and ∀j ∈ X

3.5.2 Dual Problem

We’ll motivate the dual formulation from an appeal to intuition, though it can be arrived

by purely analytic procedures. In SRoB, we need to construct paths from each client to

the root. The cost involved is the cost of connecting each client to the root, i.e. the cost

of constructing these paths. We can attribute these costs explicitly to the edges which

comprise these paths, as in the primal formulation. Or we can charge these costs in a

more implicit way, by attributing it to satisfying the connection requirements of each

client. The latter allows us to arrive at a lower bound by eliminating the edge costs, and

charging the clients instead. For each client j, we define costs θS,j - the cost of satisfying

the cut corresponding to sets S ∈ Sj . The client only incurs this cost if it actually uses

an edge from the cut, i.e, if S ∈ Sj . Intuitively, we are charging a portion of costs of the

edges from each client and cut. The total contribution of all clients towards satisfying

their connection requirements shouldn’t be greater than the price Mce of an edge which

does the same (satisfies the same connection requirements). Hence for each edge e ∈ E:

∑
j∈X

∑
S∈Sj

S : e∈δ(S)

θs,j ≤Mce
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Also, the contribution of a particular client should’t be greater than the renting cost,

because renting by itself is sufficient to satisfy the connectivity requirement, which im-

plies: ∑
S∈Sj , S : e∈δ(S)

θs,j ≤ ce

Any contribution from the clients following the above constraints would give a lower

bound to the optimal solution. Since we are interested in the sharpest lower bound, we

maximise it:

maximize
∑
j∈X

∑
S∈Sj

θS,j

subject to
∑
S∈Sj

S : e∈δ(S)

θS,j ≤ ce ∀j ∈ X and ∀e ∈ E

∑
j∈X

∑
S∈Sj

S : e∈δ(S)

θS,j ≤Mce ∀e ∈ E

θS,j ≥ 0 ∀j ∈ X and ∀S ∈ Sj

A common way to visualize these costs is by thinking of them as ‘moats’ around sets

which separate a client from the root[18] (see Figure 3.1). These moats can overlap each

other, as long as the total sum of moats on a particular edge doesn’t exceed the price

Mce of the edge.

3.6 A Primal Dual Approximation Algorithm

In the primal dual technique, we construct a feasible solution to the dual of the LP

and a corresponding approximate solution to the primal (a solution satisfying the pri-

mary complementary slackness conditions). We prove the performance guarantee by

comparing values of both the solutions. This can be done, as both the solutions have a

mathematical relation to each other (provided by complementary slackness); moreover,

the cost of the dual solution provides a lower bound for the optimal solution of the

primal.

3.6.1 The Algorithm

We construct a moat packing, drawing inspiration from similar algorithms in [3–5, 7, 18]
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Figure 3.1: The variables θS,j can be visualized as the width of moats around the
sets S. The above figure shows one such visualization, in the context of the Goemans-
Williamson procedure[4], where the moats are not allowed to overlap. In our dual
formulation, the moats can overlap, but in a constrained manner, i.e., as long as they

satisfy certain constraints.

For each client j, we maintain a reachability set Vj , and a tentatively rented set Rj . We

also maintain a tentatively bought set B and a notion of time t. At t = 0 (initially):

Vj = {j} ∀j ∈ X

Rj = φ ∀j ∈ X

B = φ

θS,j = 0 ∀j ∈ X and ∀S ∈ Sj

We start raising the j dual variables corresponding to θVj ,j at the same rate, until one

of the dual constraints becomes tight. If the dual constraint corresponds a ‘renting

constraint’, for edge e and a particular client j, then we add e to the tentatively rented

set Rj and update the reachability set Vj to include the vertices of the edge e. If

the dual constraint corresponds to a ‘buying constraint’ for an edge e, then we update

the reachability the of all clients j to include the vertices of edge e and add e to the

tentatively bought set B. As soon as there is a path from client j to r in (Vj , Rj ∪ B),

we stop raising the dual variables corresponding to client j. We continue the algorithm

until all the clients j ∈ X are connected to root r in this way.

Discussion 3.1. Our algorithm tries to simultaneously constructs paths from each

client to the root by raising the appropriate dual variables. But such an algorithm is

profligate, as there are many edges which are tentatively rented and bought but which
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Figure 3.2: At t = 0, all dual variables are zero, and no paths have been constructed.
The ε length is just for illustrative purposes and might as well be ignored.

we don’t need. We’ll need to prune our solution in a second phase, as done in similar

moat growing algorithms for network design[5, 6][3, chap. 7].

Unfortunately, we’ll see that the algorithm doesn’t provide a very good lower bound to

the optimal solution over all instances of the SRoB problem, even when we restrict it to

the class of trees.

3.6.2 Difficulties

3.6.2.1 Tree Pathological Example

Consider a run of the algorithm on the example given in Figure 3.2.

The dual variables corresponding to the group of ML clients cover the cost of the paths

of many other clients. This happens because the paths are growing in all directions, and

in the example given the ML clients buy the k edges of length L which are of use only

to the other clients, before those clients get a chance to pay for them. The lower bound

found by the algorithm becomes weaker and weaker as values of k and L become larger.

Proposition 3.2. For any constant ρ, we can find an instance of SRoB such that the

optimal value is greater than ρ times the value of the dual returned by the algorithm.
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Figure 3.3: At t = 1. The blue edges correspond to tentatively rented edges.

Figure 3.4: The red edges correspond to tentatively bought edges. At t = 2, the
paths of ML clients merge and they buy lots of edges in a short period of time.
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Figure 3.5: By the time the path of rest of the clients merge forming k clusters of M
clients each (at t = 2), their paths have already been constructed by the ML group of

clients.

Proof. The optimal solution in the given instance of SRoB is the same as shown in

Figure 3.5. The cost of the optimal solution is given by:

IOPT =M ∗ (k + 1) ∗ L+ML ∗ 1 + k ∗M ∗ 2

= (ML ∗ 2 +KM ∗ 2) +M ∗ k ∗ L (3.1)

The value of the dual solution produced by the algorithm is:

DALG = ML ∗ 2 + kM ∗ 2 (3.2)

The gap between the value of the optimal and our dual lower bound grows arbitrarily

large with k and L. Dividing the quantities in (3.1) and (3.2):

IOPT
DALG

=1 +
k ∗ L

2 ∗ (k + L)

= 1 +
kL

2 ∗ (k + L)

= 1 +
1

2 ∗ ( 1
L + 1

k )
→ ∞ as k, L→∞



The Single Sink Rent-or Buy problem 18

3.7 Modifications

3.7.1 The bidirected cut relaxation

In the pathological example in Figure 3.6, the dual variables corresponding to the group

of ML clients cover the cost of the paths of many other clients. This happens because

the paths are growing in all directions, and in the example given the ML clients buy k

edges of length L away from the root as well. On the other hand, these edges are on the

path to the root for other clients. How do we take care of such cases?

An interesting observation (which we prove in Section 3.9) is that in the optimal solution

all the clients that use an edge do it only in a particular direction. In the solution, the

orientation of the edge in the paths Pj from the client to the root is the same for all

clients j. By a similar argument we can say that the final solution to our algorithm

would be better off if all the clients use an edge in the same direction. This suggests

that we should recoup the cost of the edges direction-wise (from the dual variables). In

doing so, situations such as the tree pathological example in Figure 3.6 would be fixed.

We formalize this notion by using the bidirected cut relaxation for our LP. We view

every edge as two oppositely directed arcs, each with the same length as the edge. More

formally, we replace each undirected edge e = uv with two directed arcs ~(u, v) and ~(v, u),

each of cost ce. For any set S, let δ+(S) be the set of arcs that leave S. Call the set of

arcs ~E. Let the sets Sj be defined as before (set which contain the client j but not the

root r). The observation now is out of all the arcs that leave a set S which contains the

client but not the root, there should be either a bought edge or an edge which is rented

for client j.

The bidirected cut relaxation is just the directed version of the LP relaxation given

above, so there are double the variables be, re,j (one for each arc) and a constraint for

every set that contains one client from X but not the root. This relaxation on the

lines of a similar bidirected cut relaxation for the Steiner tree problem, first given by

Edmonds[19].
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3.7.1.1 Primal Problem

minimize M
∑
e∈ ~E

cebe +
∑
j∈X

∑
e∈ ~E

cere,j

subject to
∑

e∈δ+(S)

(be + re,j) ≥ 1 ∀j and ∀S ∈ Sj

be, re,j ≥ 0 ∀e ∈ ~E and ∀j ∈ X

3.7.1.2 Dual Problem

The dual formulation is obtained similarly (with double the constraints, each constraint

replaced by one for each arc)

maximize
∑
j∈X

∑
S∈Sj

θS,j

subject to
∑
S∈Sj

S : e∈δ+(S)

θS,j ≤ ce ∀j ∈ X and ∀e ∈ ~E

∑
j∈X

∑
S∈Sj

S : e∈δ+(S)

θS,j ≤Mce ∀e ∈ ~E

θS,j ≥ 0 ∀j ∈ X and ∀S ∈ Sj

The bidirected cut relaxation solves the problem for trees. Unfortunately, there still

exist pathological cases (in the class of general graphs) where our algorithm (with the

BCR relaxation) performs arbitrarily bad (Figure 3.6).

3.7.2 More Difficulties

3.7.2.1 General Graph Pathological Example

Consider a run of the algorithm on the example given in Figure 3.6.

Proposition 3.3. For any constant ρ, we can find an instance of SRoB where the

optimal value is greater than ρ times the value of the dual returned by the BCR modified

algorithm (Figure 3.12).
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Figure 3.6: At t = 0, all dual variables are zero, and no paths have been constructed.
Note: The ε length is just for illustrative purposes and might as well be ignored. The
algorithm actually runs in the instance where each edge is replaced by two oppositely

directed arcs, but it doesn’t make any difference to the visualization in this case.

Figure 3.7: At t = 1. The blue edges correspond to tentatively rented edges.
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Figure 3.8: At t = 2, the paths of ML clients merge and they buy lots of edges in a
short period of time.

Figure 3.9: At t = 3, ML clients reach the root.
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Figure 3.10: The path of rest of the clients merge and form k clusters of M clients
each.

Proof. The optimal solution in the above instance of SRoB is not hard to visualize

(Figure 3.11). The cost of the optimal solution is given by:

IOPT =M ∗ (k + 1) ∗ L+ML ∗ 1 + k ∗M ∗ 3

=(ML ∗ 3 +KM ∗ 3) +M ∗ (k − 1) ∗ L

The value of the dual solution produced by the algorithm is:

DALG = ML ∗ 3 + kM ∗ 3

The lower bound found by the algorithm becomes weaker and weaker as values of k and

L become larger.
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Figure 3.11: An optimal solution. Due to the symmetry properties, there are several
different optimal solutions, all having the same value.

IOPT
DALG

=1 +
(k − 1) ∗ L
3 ∗ (k + L)

≈ 1 +
kL

3 ∗ (k + L)

= 1 +
1

3 ∗ ( 1
L + 1

k )
→ ∞ as k, L→∞

3.8 Limitations of LP relaxation

Recall that the integrality gap I.G. of an integer program is the worst-case ratio (over all

instances of the problem) of the value of an optimal solution to the integer programming

formulation to value of an optimal solution to its linear programming relaxation. Thus,

over all problem instances, IOPT ≤ I.G. ∗LPOPT , and this is the sharpest upper bound

that possible using the linear program. We aim to design an algorithm which provably

achieves a constant performance guarantee. For this we’ll need to show that the value

of its solution IALG is atmost a constant ρ times the value of the linear programming
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Figure 3.12: For any constant ρ, we can find an instance Iρ of SRoB where the optimal
value is greater than ρ times the value of the dual returned by the algorithm. As an
example, in the instance in Figure 3.6 with L = 1000, the gap between the optimal
value and the value of the dual solution computed by the algorithm can be made ≈ 100

if we take more than 430 branches (k > 430)

Figure 3.13

relaxation, for all problem instances. Such a ρ would always be lower bounded by the

integrality gap IG. Thus, over all problem instances:

IOPT ≤ IALG ≤ α ∗ LPOPT , which implies α ≥ I.G.

Unfortunately, the integrality gap of the above integer program(with BCR relaxation)

is not yet known, and we do not know how close the fractional solution is to the optimal

integer solution, in the general case. The LP contains the bidirected cut relaxation for

the Steiner tree as a special case (M = 1), whose integrality gap is upper bounded by

23, which follows for the gap for the undirected relaxation[5]. We believe that the gap

for the formulation we use is also close to 2, and finding the actual gap presents an

interesting open problem.

3It is conjectured to be close to 1
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3.9 Proofs

Proposition 3.4. Let P = {Pj : j ∈ X} represent the set of paths from client j to root

r (Pj ⊆ B ∪ Rj) in an optimal network. If an edge e = uv ∈ Pi, Pj for two distinct

clients i, j ∈ X, such that u precedes v in Pi, then u precedes v in Pj.

Proof. Assume, for the sake of contradiction, that v precedes u in Pj . Let Rj(u, r)

be the set of rented edges that occur in the path for client j from node u to root r;

Rj(u, r) = {e′ ∈ Pj ∩ Rj : e precedes e′ in Pj}. Define Ri(v, r) similarly. If the total

renting cost for j on the path from node u to root r is greater than (or equal to) that for

client i (from v to r), then we can lower the cost by removing e and renting those edges

for j instead (the other case is handled similarly). Formally, if c(Ri(v, r)) ≤ c(Rj(u, r)),
then we can replace Pj with Pj ∪ Ri(v, r) − Rj(u, r) − {e}. This would give a feasible

solution having strictly lower cost. Hence the contradiction.

3.10 Conclusion and Future Work

In the pathological cases, the paths of many clients agglomerate (merge) and they end

up buying many edges, which they don’t use, from the paths of other clients. One way

out is to ’withdraw’ the contribution of these agglomerated clients from the edges that

they don’t eventually use. We would have to argue that resulting infeasible dual stays

within a factor of a feasible dual. This procedure is similar to the first dual fitting

algorithm mentioned in Chapter 4 Section 4.5.3.2, and would allow us to distribute the

costs among all the clients more evenly. It is not entirely clear that such a procedure

could be applied to our algorithm, but we believe that there’s a scope for a fix in such

a direction.

It might even be the case that our algorithm performs arbitrarily badly due to patholog-

ical cases that do not arise in practice. There’s good value in examining the algorithm

further, as it might give rise to heuristics that return solutions much closer to optimal

than indicated by its performance guarantees.



CHAPTER 4

Connected Facility Location

4.1 The Problem

Given (i) an undirected graph G = (V,E), (ii) non-negative costs (also called lengths)

ce defined on every edge e ∈ E (c : E → Q+), (iii) a set of facilities F ⊆ V with non-

negative costs fi ∈ Q+ defined on every facility i ∈ F , (iv) a set of clients X ⊆ V , and

(v) a parameter M > 1, determine1: 1. A subset F ⊆ F of the facilities to be opened

2. An assignment σ : X → F , from each client j ∈ X to some open facility σ(j) ∈ F
3. A Steiner tree T connecting the open facilities F such as to minimize the total cost:

∑
i∈F

fi +M
∑
e∈T

ce +
∑
j∈X

l(j, σ(j)),

where l(v, w) is the shortest distance between vertices v, w ∈ V in G (with respect to c).

4.2 Applications

As a practical example, consider the problem of installing a telecommunication network

infrastructure (see [11, 16]). The network consists of a central high-bandwidth core with

unlimited capacity on the links and individual connections from endnodes to nodes in

the core. Among the potential core nodes, we need to select a subset that we connect

with each other and then route the traffic from each endnode to a core node. Each

core node comes with an installation cost and we assume that the cost of installing the

1In some formulations, we have demands dj associated with each client j ∈ X (d : X → Q+). Here
we assume that every client j ∈ X has a unit demand, dj = 1,∀j ∈ X. This assumption is without loss
of generality, as we may replace j by several copies of co-located unit-demand clients.
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high-bandwidth links in the core is larger than the (per unit) routing cost from the end

nodes to the core. This problem can be handled as a CFL problem.2 In other scenarios,

facilities could be caches or file servers which need to communicate with each other to

maintain consistent data, and the clients could be users or processes requesting data

items.

4.3 Previous Literature

CFL has been received considerable attention in both theoretical computer science and

operations research literature. Gupta et al. obtain a 10.66-approximation[17], based on

rounding an exponential size LP. The ratio is subsequently improved to first 9.01[20] and

then to 4[11] via random sampling based algorithms, which is the best known result for

CFL till date. The best current primal dual based algorithm is an 8.55-approximation

by Swamy and Kumar (SK algorithm)[13](Chapter 5). Their algorithm combines the

primal dual based 2-approximation for Steiner trees[5] with the 3-approximation for

facility location by Jain and Vazirani[8] (Section 4.5.3.1)

4.4 SRoB special case

Consider a special case of the Connected Facility Location problem: Assume F = V ,

f : F → Q+ = 0 (fi = 0,∀i ∈ F), and a given vertex r must be contained in the Steiner

tree. Consider an optimal solution to this problem. Every client j ∈ X sends a unit flow

to an open facility σ(j) through a shortest path from j to σ(j), paying cost l(j, σ(j)).

This is equivalent to renting the shortest path. The flow gathered at all open facilities

further are sent to vertex r, called the sink, paying cost M
∑
e∈T

ce. This is equivalent to

buying the Steiner tree T (and hence we can send unlimited flow along its edges). Since

fi = 0 ∀i ∈ F , the total cost of the solution is the renting cost plus the buying cost.

This is just the SRoB problem.

2The partial replacement of existing out-of-date copper based networks by modern fiber optic cables
can also be handled as a CFL problem. We are given clients, that need to be connected to a central
distributor by a tree-shaped network. In commonly used Fiber-To-The-Curb (FTTC) architectures,
potential switching locations are given to which the customers may by connected by an existing copper
infrastructure. Any choice of switch installations results in a set of terminals that have to be connected
to the distributor using new fiber optic technology. The practical objective is to minimize the overall
installation costs for cables and switching devices.
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4.5 Subproblems

Connected facility location (CFL) combines problems of Facility Location and Steiner

Tree. There is an implicit cost imposed by the connectivity requirement on the cost of

opening a facility. There are existing 2-approximation primal dual algorithms for both

Steiner tree and facility location, and ideas from those would go a long way in helping

us design a 2-approximation algorithm for CFL. In the next sections, we review these

algorithms.

4.5.1 Steiner Tree

In the Steiner tree problem, we are given an undirected graph G = (V,E), non-negative

costs ce defined on every edge e ∈ E (c : E → R+), and a set of clients X ⊆ V . The goal

is to connect the clients with each other with a tree of minimum cost. The problem can

be modelled as the following integer program:

minimize
∑
e∈E

ceze

subject to
∑
e∈δ(S)

ze ≥ 1 ∀S ⊆ V : ∅ 6= S ∩X 6= X

ze ∈ {0, 1} e ∈ E

Relaxing the integrality conditions to ze ≥ 0, we get the Linear Program. The dual of

the program is given by :

maximize
∑

S⊆V : ∅6=S∩X 6=X

θS

subject to
∑

S : e∈δ(S),∅6=S∩X 6=X

θS ≤ ce, ∀e ∈ E

θS ≥ 0 , ∀S ⊆ V : ∅ 6= S ∩X 6= X

4.5.1.1 AKR Algorithm

In the AKR algorithm for Steiner trees, we raise the dual variables θS corresponding to

connected components S such that |S ∩ {r, J}| = 1 for some J ∈ X, until some dual

inequality associated with some edge e ∈ δ(C) becomes tight, and we add this edge to
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our primal solution . Once we have a feasible solution such that all clients are connected

to the root, we do a clean-up phase where we remove all the unnecessary edges. This

algorithm produces a 2-approximation.

4.5.2 Facility Location

In the metric Uncapacitated Facility Location problem, we are given (1) an undirected

graph G = (V,E), (2) a set of clients X ⊆ V , (3) a set of facilities F ⊆ V with (4)

non-negative opening costs fi ∈ Q+ defined on every facility i ∈ F , and (5) non-negative

connection costs cij for assigning client j to demand i (c : X ×F → Q+). The costs cij

obey the triangle inequality. The goal is to find a subset F ⊆ F of the facilities to be

opened and an assignment σ of clients to facilities (σ : X → F), which minimizes the

total cost (the sum of opening and connection costs):

∑
i∈F

fi +
∑
j∈X

cσ(j),j

The problem can be modelled as an integer program through the Star formulation[10]:

A star K = (i, C) consists of one facility and many clients, where facility i ∈ F and

clients C ⊆ X. The cost cK associated with a star K is fi +
∑
j∈C

cij . Let K be the set of

all stars. In the Star formulation, the facility location problem is viewed as a problem

of finding a minimum cost set of stars such that each client is in atleast one star.

minimize cKxK

subject to
∑

K=(i,C) : j∈C

xK ≥ 1 ∀j ∈ X

xK ∈ {0, 1} ∀K ∈ K

Relaxing the integrality conditions to xK ≥ 0, we get the Linear Program. The dual of

the program is given by :
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maximize
∑
j∈X

αj

subject to
∑
j∈C

αj ≤ cK ∀K = (i, C) ∈ K

αj ≥ 0 ∀j ∈ X

4.5.3 Three Different Algorithms

We review three different primal-dual type algorithms for UFL. The first of these

algorithms[8] (called the JV algorithm) is the standard primal dual method (Section

2.3.1), and achieves a 3-approximation. The other two are greedy algorithms[9] and

follow the dual fitting methodology (Section 2.3.2).

4.5.3.1 JV Algorithm

The first algorithm (call it the JV algorithm)[8] uses the fact that a maximal dual

solution corresponds to a feasible set of facilities, and an economically suitable subset

of facilities can be chosen from that by forming clusters of demands and facilities.

In the algorithm, we raise the dual variables αj of all clients simultaneously. At any

point of the algorithm, a client contributes max(αj − cij , 0) towards the opening of

facility i. When the total contribution given to a facility equals its opening cost, we

tentatively open the facility and freeze the dual variables of all those facilities which had

a non-zero contribution. We continue the process until all the clients have a non-zero

contribution to a tentatively open facility. Because a client might contribute to more

than one facility, we do a final clean-up phase where we choose only a subset of the

tentatively open facilities to open, and then assign clients to the nearest open facility.

After the clean-up phase, the cost of the final primal solution is shown to be within a

factor of 3 of the dual (here the euclidean distance property is crucial) , and thus the

algorithm produces a 3-approximation. This algorithm emulates the standard primal-

dual method. We start off with a feasible dual feasible solution and a corresponding

infeasible primal solution, and increase the value of the dual in such a way that we

obtain a feasible primal solution. We do this by maintaining the primal complementary

slackness condition at all times.
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4.5.3.2 Dual Fitting

The first dual fitting algorithm[9] is a modification of the JV algorithm. After we

tentatively open a facility,all the clients with a non-zero contribution to it are connected

to it and their contribution isn’t considered for covering the opening costs of other

facilities (we say they ’withdraw’ their contribution). In doing this, the dual feasibility

is compromised. All clients contribute to and are assigned only one facility, and we don’t

need a clean up phase. Here the value of the primal solution is equal to the dual value

(which is infeasible). The final step shows that the dual is within a factor of 1.81 of a

feasible dual, thus achieving a 1.861-approximation.

4.5.3.3 JMS Algorithm

The second dual fitting algorithm[9] (called JMS here) has a minor modification from the

first one. In the second algorithm a client stops contributing to other facilities once it is

connected to a facility, but here it continues to offer some amount to other facilities. The

amount is the connection cost it will save by switching to a new facility. This algorithm

does slightly better than the second algorithm, producing a 1.61-approximation.



CHAPTER 5

The Swamy Kumar Algorithm

The difficulty in SRoB is due to the tension of “route vs gather”. On one hand, we would

like to route flow between the clients and the root on a shortest path; on the other, we

would like to gather flow from different clients together in order to take advantage of

economies of scale. Many approaches have been applied to resolve this tension. The

Swamy Kumar algorithm (SK algorithm) makes the tradeoff by first gathering enough

demand locally , and then routing the flow from these gathered clusters to the root

through a Steiner tree. While they use the primal dual JV algorithm[8] (Section 4.5.3.1)

for the gathering phase, for the second phase they use a combination of the primal dual

Steiner tree procedure[5] and a dual fitting-type analysis. The algorithm is generalized

to CFL with minor modifications, but the principle remains the same. We refer the

reader to their paper [13] for a full reading of the algorithm.

5.1 Linear Program

Swamy and Kumar use following integer program[13] for their analysis.1

1Here it is assumed that we know a facility r that is opened and hence belongs to the Steiner tree in
the optimal solution. This assumption doesn’t affect anything because all |F| different possibilities for
r can be tried.
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minimize
∑
i∈F

fiyi +
∑
j∈X

∑
i∈F

cijxij +M
∑
e∈E

ceze

subject to
∑
i∈F

xij ≥ 1, ∀j ∈ X

xij ≤ yi, ∀i ∈ F and ∀j ∈ X∑
i∈S

xij ≤
∑
e∈δ(S)

ze, ∀S ⊆ V, r /∈ S and ∀j ∈ X.

yr = 1

xij , yi, ze ∈ {0, 1} ∀i ∈ F , ∀j ∈ X,∀e ∈ E

5.2 SRoB formulation

If we put fi = 0 and F = V , we get another formulation of SRoB. Relaxing the integrality

constraints to xij , yi, ze ≥ 0 gives us a Linear Program.

5.2.1 Primal Problem

minimize
∑
j∈X

∑
i∈V

cijxij +M
∑
e∈E

ceze

subject to
∑
i∈V

xij ≥ 1, ∀j ∈ X

xij ≤ yi, ∀i ∈ V and ∀j ∈ X∑
i∈S

xij ≤
∑
e∈δ(S)

ze, ∀S ⊆ V, r /∈ S and ∀j ∈ X.

yr = 1

xij , yi, ze ∈ {0, 1} ∀i ∈ F , ∀j ∈ X,∀e ∈ E
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5.2.2 Dual Problem

maximize
∑
j∈X

αj

subject to αj ≤ cij +
∑

S⊆V : i∈S,r/∈S

θS,j ∀j ∈ X and ∀i ∈ V, i 6= r

αj ≤ crj ∀j ∈ X∑
j∈X

∑
S⊆V : e∈δ(S)

θS,j ≤Mce ∀e ∈ E

αj , θS,j ≥ 0 ∀j ∈ X and ∀S ⊆ V, r /∈ S

5.2.3 Integrality Gap

Swamy and Kumar give a 4.55-approximation algorithm using the above linear program.

Thus, the integrality gap of the LP is atmost 4.55.

5.3 Scope for Improvement

We investigate if the analysis in Kumar-Swamy holds a scope for improvement. The

problem instance in Example 5.1 throws light on the inefficiencies which arise in the SK

algorithm.

Example 5.1.

Analysis. The algorithm produces a worst case ≈ 3-approximation for the problem

instance in Figure 5.12 :

IALG
IOPT

=
M ∗ (2L+ ε) +M) ∗ L
M ∗ (L+ ε) +Mδ

→ 3 as ε, δ → 0

Observation 1. Comparing Figure 5.3 and Figure 5.4, we get the ratio between the

Steiner Cost of the solution constructed by the algorithm and the Optimal Steiner Cost

as (2L+ε+δ)
δ , which becomes arbitrarily large as δ becomes small or length L becomes

large.

2This also shows that the Swamy Kumar analysis can’t be improved beyond an approximation ratio
of 3.
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Figure 5.1: In the above problem instance, the Swamy-Kumar phase 1 clusters the
demands at a location far away from the root and opens it, when paying just a little

extra cost would have led to an overall better solution.

Figure 5.2: Phase 1. The red vertex is the facility chosen.
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Figure 5.3: Phase 2. This phase simulates the primal dual algorithm for the rooted
Steiner tree problem with r as the root and the red vertex as the terminal

Figure 5.4: Optimal Solution
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Discussion 5.1. In CFL, the optimal solution is constrained by the demand to satisfy

the connectivity requirements economically. The Swamy-Kumar algorithm operates on

the principle that partially economic viability is achieved by opening those facilities

where enough demand can be clustered at a minimum local connection cost (Figure

5.2). The algorithm ignores the full implicit costs imposed on each facility (e.g, the

distance between open facilities ) in its decision regarding which facilities to open.

Furthermore, in the Swamy Kumar analysis, the cost of constructing the Steiner tree

(in the second phase) is bounded by (2+α) times the overall optimal cost, where α is

the Steiner tree approximation factor. A sharper analysis might relate the Steiner cost

to the optimal Steiner tree cost, but this is not possible in the SK algorithm, as the gap

between the cost of the Steiner tree constructed by the algorithm and the optimal tree

might become arbitrarily large (Observation 1)



CHAPTER 6

Combining JMS and Steiner tree algorithms:

Towards a 2-approximation for CFL

6.1 Introduction

In Chapter 4, we introduced the JMS algorithm for facility location due to Jain et al.[9].

A closer reading of the analysis of the JMS algorithm shows that there’s a slack in the

analysis which can possibly be exploited. The dual solution α produced by algorithm

on an instance I of the facility location problem, is feasible for an instance I ′ obtained

from I by multiplying only the connection costs (and not the facility costs) by 2. On the

other hand, there’s also a slack in the primal dual analysis of Prize Collecting Steiner

tree algorithm by Goemans-Williamson, where the cost of the constructed Steiner tree

has cost at most twice the sum of certain dual variables. In this chapter, we sketch out

an approach on combining these two approaches, by relating the relating the facility

costs in the JMS algorithm to the vertex potentials in the Goemans-Williamson PCST

procedure. This approach holds a lot of promise for obtaining an overall 2-approximation

for CFL.

6.2 An Integer Program

We use the Star formulation of Facility Location (Section 4.5.2) to obtain a new integer

program which captures CFL. As before, we assume that we know a facility r that is

opened and hence belongs to the Steiner tree in the optimal solution. This assumption

doesn’t affect anything because all |F| different possibilities for r can be tried.
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A star K = (i, C) consists of one facility and many clients, where facility i ∈ F and

clients C ⊆ X. The cost cK associated with a star K is fi +
∑
j∈C

cij . Let K be the set of

all stars.

CFL can be viewed as a problem of choosing a set of stars such that each client belongs

to atleast one star, and then choosing a set of edges which connect the facilities from

each star. We create decision variables to represent these choices: let integer variable xK

represent whether star K has been chosen or not, and let integer variable be represent

whether edge e has been included in the Steiner tree T or not (the Steiner or bought

status of edge e, in our SRoB problem parlance).

xK =

1 K is chosen

0 K is not chosen
be =

1 be ∈ T

0 be /∈ T

To reflect the above nature of the decision variables, we constrain the decision variables

to non-negative integers : xK , bE ∈ {0, 1}. If we choose a particular star (i, C) for our

solution, we say we have opened the facility i and assigned or connected clients j ∈ S to

it.

We need to enforce that the decision variables represent a feasible solution. i.e. a network

in which (1) each clients is assigned to a facility, and (2) each open facility is connected

to the root through a Steiner edge. From every cut that separates an open facility i

(belonging to a star K = (i, C)) from the root, there must be an edge use atleast one

edge. We formalize these requirements: Every client must belong to atleast one of the

chosen stars, so for each client j,

∑
K=(i,C) : j∈C

xK ≥ 1

Given a non-empty set of vertices S ⊂ V , let δ(S) denote the set of edges in the cut

defined by S; that is, δ(S) is the set of all edges with exactly one endpoint in S. For

every facility i and every cut separating the root r from the facility i, we introduce the

following constraint: ∑
e∈δ(S)

be ≥
∑

K=(i,C)

xK

We want to find a feasible solution of minimum cost. Given the decision variables, and

the constraints described above, the cost of the network is M
∑

e∈E cebe +
∑

K∈K cKxK .
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Thus, the following integer program models CFL:

minimize M
∑
e∈E

cebe +
∑
K∈K

cKxK

subject to
∑

K=(i,C) : j∈C

xK ≥ 1 ∀j ∈ X

∑
e∈δ(S)

be ≥
∑

K=(i,C)

xK ∀i ∈ F , ∀S : i ∈ S, r /∈ S

xK , be ∈ {0, 1} ∀K ∈ K and ∀e ∈ E

6.3 Linear Programming Relaxation

We replace the constraints xK , be ∈ {0, 1} with the constraints xK , be ≥ 0 to obtain a

Linear Programming relaxation on the integer program.1

6.3.1 Primal Problem

minimize M
∑
e∈E

cebe +
∑
K∈K

cKxK

subject to
∑

K=(i,C) : j∈K

xK ≥ 1 ∀j ∈ X

∑
e∈δ(S)

be ≥
∑

K=(i,C)

xK ∀i ∈ F , ∀S : i ∈ S, r /∈ S

xK , be ≥ 0 ∀K ∈ K and ∀e ∈ E

6.3.2 Dual Problem

We’ll motivate the dual formulation with an appeal to intuition. In CFL, the costs

involved are connection costs, facility opening costs, and the cost of building the Steiner

tree. Instead of explicitly ascribing these costs to edges and stars, we recoup these costs

from the clients instead. Let αj denote the payment client j is willing to make towards

buying a star and building the Steiner tree. For any star K = (i, C), the clients j ∈ C
would not be willing to pay more than the price cK of the star cK (connection and

facility opening costs) and the cost of constructing the part of the Steiner tree that joins

facility i to root r. Under these conditions, the sum of the payments provides a lower

1We could also add the constraints xK , be ≤ 1, but they would be redundant: in any optimal solution
to the problem, we can reduce xK , be > 1 to xK , be = 1 without affecting the feasibility and without
increasing the cost.
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bound to the cost of any feasible primal solution. Since we are interested in the sharpest

lower bound, we maximise these payments:

maximize
∑
j∈X

αj

subject to
∑
j∈C

αj ≤ cK +
∑
S : i∈S
r/∈S

θS,i ∀K = (i, C) ∈ K

∑
i∈F

∑
S : e∈δ(S)

θS,i ≤Mce ∀e ∈ E

αj , θS,i ≥ 0 ∀j ∈ X and ∀S ⊆ V, r /∈ S

6.4 SRoB

In the special case of SRoB, all facility opening costs fi are zero, and hence cK =∑
j∈C cij . The dual reduces to:

maximize
∑
j∈X

αj

subject to
∑
j∈C

αj ≤
∑
j∈C

cij +
∑
S : i∈S
r/∈S

θS,i ∀K = (i, C) ∈ K

∑
i∈F

∑
S : e∈δ(S)

θS,i ≤Mce ∀e ∈ E

αj , θS,i ≥ 0 ∀j ∈ X and ∀S ⊆ V, r /∈ S

6.4.1 Combining JMS Algorithm with Goemans-Williamson moat-growing

Compare the above formulation for SRoB with the dual program for metric uncapac-

itated facility location given in Section 4.5.2 (substituing the cost of the star cK by

fi +
∑
j∈C

cij):
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maximize
∑
j∈X

αj

subject to
∑
j∈C

αj ≤
∑
j∈C

cij + fi ∀K = (i, C) ∈ K

αj ≥ 0 ∀j ∈ X

Note the striking similarity between the role of expression
∑

S : i∈S
r/∈S

θS,i in SRoB with the

facility opening costs fi - the connectivity requirements in SRoB show a character like

that of facility opening costs in UFL. This observation is useful because it suggests that

we might be able to borrow techniques and results from UFL, for which 2-approximation

algorithm primal dual algorithm already exists (Section 4.5.3.3), and apply them to

SRoB. In the JMS algorithm in particular, the dual variables are constructed in such a

way that they are atmost twice the connection cost plus the facility opening cost, for

any star:

∑
j∈C

αj ≤ 2.
∑
j∈C

cij + fi

Substituting the facility cost with the Steiner costs associated with the facility , the JMS

construction would give:

∑
j∈C

αj ≤ 2.
∑
j∈C

cij +
∑
S : i∈S
r/∈S

θS,i ∀K = (i, C) (6.1)

The dual variables can also be interpreted as moats around sets, see Figure 3.1 in

Chapter 3. In the PCST procedure[4] (and related Steiner tree algorithms) by Goemans

and Williamson, the eventual Steiner tree constructed has cost at most twice the sum

of certain dual variables, which contribute to the tree. Combining these two approaches

would involve defining facility opening costs in such a way that JMS algorithm opens only

those facilities which can pay for the tree through Goemans-Williamson moat growing

procedure. At this stage, it is not entirely clear how such facility costs (or potentials, in

PCST parlance) should be defined and what possible modifications to the JMS algorithm

would be needed, but it is a very interesting direction for future work.



APPENDIX A

NP Completeness

One of the most powerful performance measure of an algorithm is the number of steps

it takes to produce the solution as a function of input size, over all problem instances.

1 This measure is a machine independent measure of performance, and can be easily

translated to the time it takes to execute the algorithm on any given machine, hence its

also a measure of the time complexity of the algorithm.

The lower the time complexity, the larger the problem we can hope to solve in a reason-

able amount of time. An algorithm whose time complexity can be expressed as a fixed

degree polynomial in terms of input size is called a polynomial-time algorithm. These

problems are efficiently solvable and referred to as tractable.

Definition A.1. (Polynomial Time Algorithm) An algorithm for a problem is said

to run in polynomial time, or said to be a polynomial-time algorithm, with respect to a

particular model of computer (such as a RAM) if the number of instructions executed

by the algorithm can be bounded by a polynomial in the size of the input.

The complexity is used to divide all problems into a class hierarchy. The class P consists

of all problems which have polynomial-time solution. For instance, the examples of

addition and multiplication mentioned above have a polynomial time algorithm and is

thus are P. So is the shortest-path problem mentioned in the introduction which has a

polynomial time algorithm (given by Edger Dijkstra).

Unfortunately, most combinatorial optimization problems are NP − hard , that is, if

one believe the P 6= NP conjecture, then such problems do not have polynomial time

algorithms.

1For example, assuming each arithmetic operation to be a single step operation, then the number of
steps required to add n numbers is n − 1, multiplying two n × n matrices by the elementary method
taught in high school requires 2n3 − n2 steps, and so on.
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