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Abstract

A vector space over a field F is a set V together with two binary operations, called vector

addition and scalar multiplication. It is standard practice to think of a Euclidean space Rn as

an n-dimensional real coordinate space i.e. the space of all n-tuples of real numbers (Rn), with

vector operations defined using real addition and multiplication coordinate-wise. A natural

question which arises is if it is possible to redefine vector operations on the space in such a

way that it acquires some other dimension, say k (over the same field i.e., R). In this paper,

we answer the question in the affirmative, for all k ∈ N. We achieve the required dimension

by ‘dragging’ the structure of a standard k-dimensional Euclidean space (Rk) on the n-tuple

of real numbers (Rn). At the heart of the argument is Cantor’s counterintuitive result that

R is numerically equivalent to Rn for all n ∈ N, which can be proved through an elegant

construction. Finally, we generalize the result to all finite dimensional vector spaces.
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1 Introduction

An engineer, a physicist, and a mathematician are discussing how to visualise four

dimensions:

Engineer: I never really get it.

Physicist: Oh it’s really easy, just imagine three dimensional space over a time -

that adds your fourth dimension.

Mathematician: No, it’s way easier than that; just imagine Rn, then set n = 4.

∗Piyush Ahuja graduated from IIT Delhi in 2013 with a major in Maths and Computing. His research straddles

the fields of Algorithms and Economics. The work presented here was concluded in his sophomore year.
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The humourous anectode strikes at the heart of the notion of ‘dimension’. With our

Euclidean intuitions, inherited from ancient primates, it is easy to jump to the notion that

the physical universe we exist in can be well represented by a 3 parameter model of depth,

breadth and height - that it is 3-dimensional. But what does such a statement really mean?

Modern mathematics has a way to formalize, generalize and give meaning to these notions

by defining the Euclidean space as an n-dimensional real vector space. The vectors correspond

to the points, and the addition operation in the vector space corresponds to translations in

the Euclidean space. Defined in this manner, the plane is a 2-dimensional real vector pace R2,

the space is a 3-dimensional real vector space R3, and so on.

Given this context, the idea of having Rn (the set of all n-tuples of real numbers), with a

different dimension (say k), may seem absurd at first glance. The gap in the intuition stems

from thinking of dimension as purely residing in the properties of the set Rn, and not in the

vector operations that define the relationship between members of the set. The space R3 has

dimension 3 not because a point in R3 is described by 3 different coordinates, but because it has

imbibed certain special properties because of the way vector addition and scalar multiplication

have been defined over it.1

We show that it is possible to change the structure of the space Rn to one having an

arbitrary dimension k ∈ N (for all n ∈ N). We do this by ‘naturally relating’ it to the space

Rk, in particular redefining vector addition and scalar multiplication on Rn to imitate those

of the space Rk. We then generalize the result to any finite-dimensional vector space which

exists in bijection with another vector space of a different dimension.

2 On Rn being numerically equivalent to Rk

It is a well known theorem in Linear Algebra that every n-dimensional vector space over a

field F is isomorphic to the standard space Fn. Thus, if Rn were to attain the dimension k

over R, the resulting space would be isomorphic to Rk. To this end, we first prove that the

space Rn is numerically equivalent to the space Rk, which is a necessary condition for such an

1The idea of independence is crucial here. Space has three dimensions because the length of a box is independent

of its width or breadth, and space-time is four-dimensional because the location of a point in time is independent

of its location in space. Thus, space is three-dimensional because every point in space can be described by a linear

combination of three independent vectors.
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isomorphism to exist.2.

We first prove that the the unit square [0, 1] × [0, 1] is numerically equivalent to the unit

interval [0, 1]. This would suffice to prove that R is numerically equivalent to R2, since a

bijection from [0, 1] 7→ R exists. Also, it does not really matter whether we consider [0, 1],

(0, 1], or (0, 1), since there are bijections between all of these.

Theorem 1. The set (0, 1]× (0, 1] is numerically equivalent to the unit interval (0, 1]

Proof. For real numbers with two decimal expansions, we will choose the one that ends with

nines rather than with zeroes. Thus, we represent 1/2 as 0.4999...
(
0.49

)
instead of as 0.5. Let

x = (a, b) ∈ R2. Break each coordinate into groups consiting of zeroes (possibly none) followed

by a single non-zero digit. For example, 1/400 = 0.0024999... is broken up as 0.002 4 9 9 9 ...,

and 0.003801007373... as 0.003 8 001 007 3 7 3 ... This is well defined since we have not taken up

decimal representations ending with infinite zeroes. Thus now x = (0.a1a2a3 . . . , 0.b1b2b3...) ∈

R2, where ai and bj represent groups consisting of zeroes followed by a non-zero digit. Let

y = 0.a1b1a2b2... Note that y will not have an infinite sequence of trailing zeroes. The resuling

map φ : (0, 1]× (0, 1] 7→ (0, 1], where φ (x) = y, defines a bijection between the two sets. 3

Corollary 2. R is numerically equivalent to R2.

Theorem 3. The sets Rn and Rn + 1 are numerically equivalent, where n ∈ N.

Proof. Well proceed by the principal of Mathematical Induction.

Base Case: For n = 1: R and R2 are numerically equivalent. (Corollary 2)

Inductive Hypothesis: The sets Rn−1 and Rn are numerically equivalent, where n ∈ N.

Claim: The sets Rn and Rn+1 are numerically equivalent, where n ∈ N.

Let Φ : Rn−1 7→ Rn be a bijection (Inductive hypothesis)

If x ∈ Rn−1; x = (x1, ..., xn−1), then Φ(x) = (Φ(x)1, ...,Φ(x)n); Φ(x) ∈ Rn.

Take y = (y1, ..., yn) ∈ Rn. The (n − 1)-tuple formed from this n-tuple, by taking the first

n− 1 components is y(n− 1) = (y1, ..., yn−1); y(n− 1) ∈ Rn−1.

2The counterintuitive result that cardinality did not respect dimensions was first discovered by Cantor, and led

to his now famous remark, “I see it, but I dont believe it.” For a better exposition, read [?]
3We can also interleave digits, instead of groups as shown. However, this map would be not be surjective, and we’ll

need to use the Schroeder-Bernstein theorem to show the existence of the bijection. Such a proof would, however,

be non-constructive. Cantor himself had originally tried a proof with interleaving digits, but later Dedekind pointed

out the problem of nonunique decimal representations.
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Let the element formed by appending yn to the n-tuple Φ(y(n − 1)) be denoted by τ(y);

τ(y) = (Φ(y(n− 1))1, ...,Φ(y(n− 1))n, yn).

The function τ : Rn 7→ Rn+1 where the element y ∈ Rn is mapped to τ(y) ∈ Rn+1, is a one-one

onto correspondence.

Corollary 4. The sets R and Rn are numerically equivalent, where n ∈ N.

Corollary 5. The sets Rn and Rk are numerically equivalent, where n, k ∈ N.

3 The Vector Space Rn
k

Let Φ : Rn 7→ Rk be a bijection from the set of real n-tuples Rn to the vector space Rk. As

proved in the previous section, such a bijection exists, for all n ∈ N and all k ∈ N.

Assume ~x, ~y ∈ Rn and c ∈ R. We define two binary operations, vector additon and scalar

multiplication, on the set Rn as follows:

Vector Addition : ~x⊕ ~y = Φ−1(Φ(~x) + Φ(~y)) (1)

Scalar Multiplication : c� ~x = Φ−1(c · (Φ(~x)) (2)

3.1 Axioms

To qualify as a vector space, the set Rn with the operations vector addition and scalar multi-

plication defined above must satisfy the following eight axioms.

1. Commutativity of addition

~x⊕ ~y

= Φ−1(Φ(~x) + Φ(~y)) (From Equation 1)

= Φ−1(Φ(~y) + Φ(~x)) (Commutativity of Rk)

= ~y⊕ ~x (From Equation 1)
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2. Associativity of addition

~x⊕ (~y⊕ ~z)

= ~x⊕ (Φ−1(Φ(~y) + Φ(~z))) (From Equation 1)

= Φ−1(Φ(~x) + Φ((Φ−1(Φ(~y) + Φ(~z))))) (From Equation 1)

= Φ−1(Φ(~x) + (Φ(~y) + Φ(~z))) (Φ ◦ Φ−1 = 1)

= Φ−1((Φ(~x) + Φ(~y)) + Φ(~z)) (Associativity of Rk)

= Φ−1((Φ(Φ−1(Φ~x + Φ~y)) + Φ(~z)) (Φ ◦ Φ−1 = 1)

= Φ−1((Φ(~x + ~y) + Φ(~z)) (From Equation 1)

= (~x + ~y)⊕ ~z (From Equation 1)

3. Existence of Identity element of addition

~x⊕ Φ−1(0k)

= Φ−1(Φ(~x) + Φ(Φ−1(0k))) (From Existence of Identity 0k for Rk)

= Φ−1(Φ(~x) + 0k) (Φ ◦ Φ−1 = 1)

= Φ−1(Φ(~x)) (0k is Identity for Rk)

= ~x (Hence Additive Identity for Rn
k is 0k)

4. Existence of Additive Inverse

~x⊕ Φ−1(−Φ(~x))

= Φ−1(Φ(~x) + Φ(Φ−1(−Φ(~x))) (From Equation 1)

= Φ−1(Φ(~x) + (−Φ(~x))) (Φ ◦ Φ−1 = 1)

= Φ−1(0k) (Hence Additive Inverse of ~x is Φ−1(−Φ(~x)))

5. Existence of Identity element of scalar multiplication

1� ~x

= Φ−1(1 · (Φ(~x)) (From Equation 2)

= Φ−1(Φ(~x)) (Multiplication by Scalar Identity for Rk)

= ~x (Φ ◦ Φ−1 = 1)
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6. Compatibility of scalar multiplication with field multiplication

c1 � (c2 � ~x)

= Φ−1(c1 · (Φ(c2 � ~x)) (From Equation 2)

= Φ−1(c1 · (Φ(Φ−1(c2 · ~x))) (From Equation 2)

= Φ−1(c1 · (c2 · Φ(~x))) (Φ ◦ Φ−1 = 1)

= Φ−1(c1c2 · Φ(~x))) (Compatibility of Rk)

= c1c2 � ~x (From Equation 2)

7. Distributivity of scalar multiplication with respect to vector addition

c� (~x⊕ ~y)

= Φ−1(c · Φ(~x⊕ ~y)) (From Equation 2)

= Φ−1(c · Φ(Φ−1(Φ(~x) + Φ(~y)))) (From Equation 1)

= Φ−1(c · (Φ(~x) + Φ(~y))) (Φ ◦ Φ−1 = 1)

= Φ−1(c · Φ(~x) + c · Φ(~y)) (From Distributivity of Rk)

= Φ−1(Φ(Φ−1(c · Φ(~x)) + Φ(Φ−1(c · Φ(~y))) (Φ ◦ Φ−1 = 1)

= Φ−1(Φ(c� ~x) + Φ(c� ~y)) (From Equation 2)

= (c� ~x)⊕ (c� ~y) (From Equation 1)

8. Distributivity of scalar multiplication with respect to field addition

(c1 + c2)� ~x

= Φ−1((c1 + c2) · (Φ(~x)) (From Equation 2)

= Φ−1(c1 · (Φ(~x) + c2 · (Φ(~x)) (From Distributivity of Rk)

The set Rn, together with vector additon and scalar multiplication as defined in Equation

1 and 2, satisfies all eight axioms of a vector space over the field R. We call this vector space

Rn
k .
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3.2 Basis and Dimension

What is the dimension of the vector space Rn
k .?

Let B = {α1, . . . , αk} be an ordered basis for Rk. Let T ⊂ Rn : T = {Φ−1(α1), . . . ,Φ
−1(αk)}.

Take ~x ∈ Rn. Since B is a basis for Rk, and Φ(~x) ∈ Rk, there exists a unique set of real

numbers (coordinates) (x1, . . . , xk) such that:

Φ(~x) = x1 · α1 + . . .+ xk · αk

⇔ ~x = Φ−1(x1 · α1 + . . .+ xk · αk)

⇔ ~x = Φ−1(x1 · Φ(Φ−1α1) + . . .+ xk · Φ(Φ−1αk))

⇔ ~x = Φ−1(Φ(x1 � Φ−1α1) + . . .+ Φ(xk � Φ−1αk))

⇔ ~x = (x1 � Φ−1α1)⊕ . . .⊕ (xk � Φ−1αk)

Thus, for every ~x ∈ Rn, there exists a unique set of real numbers (x1, . . . , xk) such that

~x = x1�Φ−1α1+ . . .+xk�Φ−1αk. This implies that Φ−1(B) ⊂ Rn = {Φ−1(α1), . . . ,Φ
−1(αk)}

is a basis for Rn
k . Since |Φ−1(B)| = k, dimRn

k = k.4

4 Conclusion

Let Φ : V 7→ W be a one-one onto correspondence, where W is a vector space over field F.

Then we can always define vector addition and scalar multiplication on the set V , in such a

way, so that it attains the vector space structure and dimension of W . This would turn Φ into

a linear map between the two vector spaces, V and W . In particular, if W is a k-dimensional

Euclidean space, then we can always give the set Rn the structure of the k-dimensional space.

The set {(x1, x2, x3) : xi ∈ R, i = 1, 2, 3} for instance, can always be represented as having

dimension of 1 over R.

Appendix

Theorem 6. The sets [0, 1] , (0, 1] and (0, 1) are in bijection with each other.

4The dimension of a vector space is the same as the cardinality of its basis
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Proof. Let f be the function with mappings 0 7→ 1
2 ,

1
2 7→

2
3 ,

2
3 7→

3
4 , and so on. For any other

x ∈ [0, 1] −
{

0, 12 ,
2
3 ,

3
4 , . . .

}
, f (x) = x. Then f : [0, 1] 7→ (0, 1] is a bijection. A bijection from

(0, 1] to (0, 1) can be found similarly.

Theorem 7. There is a bijection from R to the open interval (0, 1).

Proof.

In Figure 4, S is a semi-circle, excluding the end points. S is drawn in such a way that the

real axis is tangent to it at 0.5, with radius 0.5. An arbitrarily chosen point x ∈ R is joined to

the centre of S with a line. The point x′ is obtained on S by the intersection of the line and

the semi-circle. This gives a one-to-one onto correspondence between the every point x ∈ R

and x′ ∈ S. Now project the point x′ ∈ S to the point f (x) on the real axis. The function f

thus defined gives a bijection between R and open interval (0, 1).

Theorem 8. Rn
k is isomorphic to the space Rk.

Proof. Note that:

Φ(~x⊕ ~y) = Φ(Φ−1(Φ(~x) + Φ(~y))) = Φ(~x) + Φ(~y) (3)

Φ(c� ~x) = Φ(Φ−1(c · (Φ(~x))) = c · (Φ(~x)) (4)

Hence, the function Φ is a linear transformation as well as a bijection from Rn
k to Rk. Thus,

Rn
k
∼= Rk
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Corollary 9. The space Rn
k , defined as above, is a vector space over the field R with dimension

k.
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